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QCD: Hadron at different scales

Q2 (GeV 2)

Quark and gluons don’t exist as 
asymptotic states

soft physics perturbative QCD

Where does       come from?Q2
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Hadron radius (“internal” scale)
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“External” scale

✓

Deep Inelastic Scattering

electron beam

Photon emission (leading QED order)

Inclusive vs. Semi-inclusive processes



“External” scale
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electron beam
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External photon brings a hard scale to the 
problem
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Electron can distinguish a parton in a see of 
soft particles
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People didn’t know it 50 years ago
Electron interacts with the a 
whole hadron
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the scattered particle to +0.05%. Following the system
of hodoscopes was a set of counters used to distinguish
electrons from pions. The principal element was a total
absorption lead-lucite shower counter. The pulse height
threshold was set to be more than 99%%u~ eScient for elec-
trons. In the elastic scattering experiments this counter

alone was enough to ensure a pure electron signal, but for
inelastic scattering, pion backgrounds increased and the
use of the dE/dx counters was sometimes necessary.
These counters measured the energy loss in a scintillator
for particles which have passed through one radiation
length of lead. Electrons will often shower in the radia-
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FIG. 20. Photograph of the 8 and 20 GeV spectrometers in End Station A.
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Oeep inelastic scattering: Comparisons with the quark model

Jerome I. Friedrnan
Oepartment of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts OZf 90

EARLY RESULTS

In the latter half of 1967 a group of physicists from the
Stanford Linear Accelerator Center (SLAC) and the
Massachusetts Institute of Technology (MIT) embarked
on a program of inelastic electron-proton scattering after
completing an initial study (Coward et al. , 1968) of elas-
tic scattering with physicists from the California Institute
of Technology. This work was done on the newly com-
pleted 20 GeV Stanford linear accelerator. The main
purpose of the inelastic program was to study the elec-
troproduction of resonances as a function of momentum
transfer. It was thought that higher-mass resonances
might become more prominent when excited with virtual
photons, and it was our intent to search for these at the
very highest masses that could be reached. For com-
pleteness we also wanted to look at the inelastic continu-
um, since this was a new energy region which had not
been previously explored. The proton resonances that we
were able to measure' showed no unexpected kinematic
behavior. Their transition form factors fell about as rap-
idly as the elastic proton form factor with increasing
values of the four-momentum transfer q. However, we
found two surprising features when we investigated the
continuum region (now commonly called the deep inelas-
tic region).

as a function of the square of the four-momentum
transfer, q =2EE'(1—cos8), for constant values of the
invariant mass of the recoiling target system 8' where
W =2M(E E')—+M q. —The quantity E is the ener-
gy of the incident electron, E' is the energy of the final
electron, and 8 is the scattering angle, all defined in the
laboratory system; M is the mass of the proton. The
cross section is divided by the Mott cross section in order
to remove the major part of the well-known four-
momentum-transfer dependence arising from the photon
propagator. The q dependence that remains is related
primarily to the properties of the target system. Results
from 10' are shown in the figure for each value of 8'. As
8 increases, the q dependence appears to decrease. The
striking difference between the behavior of the deep in-
elastic and elastic cross sections is also illustrated in this
figure, where the elastic cross section, divided by the
Mott cross section for 0= 10, is shown.
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(1)Weak q2 dependence

The first unexpected feature of thes~ early results
(Bloom et al. , 1969; Breidenbach et al. , 1969) was that
the deep inelastic cross sections showed a weak falloff
with increasing q . The scattering yields at the larger
values of q were between one and two orders of magni-
tude greater than expected.
The weak momentum-transfer dependence of the in-

elastic cross sections for excitations well beyond the reso-
nance region is illustrated in Fig. 1. The differential cross
section divided by the Mott cross section o.M,« is plotted
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*This lecture was delivered 8 December, 1990, on the occasion
of the presentation of the 1990Nobel Prize in Physics.
~W. K. H. Panofsky, in Proceedings of the XIV International
Conference on High Energy Physics, Vienna (1968), p. 23. The
experimental report, presented by the author, is not published
in the Conference Proceedings. It was, however, produced as a
SLAC preprint.
The Mott cross section,

FICr. 1. (d o./dQdE')/oM«„ in GeV ', vs q for 8 =2, 3, and
3.5 GeV. The lines drawn through the data are meant to guide
the eye. Also shown is the cross section for elastic e-p scatter-
ing divided by o-M«„(do-/d0)/o. M«„calculated for 0=10', us-
ing the dipole form factor. The relatively slow variation with q
of the inelastic cross section compared with the elastic cross
section is clearly shown.
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Stanford Linear Accelerator Center (SLAC) in 60s

Looks like QED

First evidence of the parton model



Parton model

This picture comes from 
SLAC-MIT results
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In 70s people concluded that 
QCD is a theory of partons
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DIS kinematics
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Lorentz invariant variables:
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are scalars
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DIS amplitude

�⇤

P

�ie�µ

us(l) �igµ⌫
q2

J⌫

Hadronic current We don’t know QCD so we 
don’t know its structure
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DIS cross section

Average over incoming spin 
of a hadron and electron

Assume summation 
over all final states
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DIS cross section
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It is time to write the cross section

We don’t detect this particles 
in the final state
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It is time to write the cross section

All possible final states

“Inclusive” process

Final form of the cross 
section
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Hadronic tensor

It’s a Lorentz tensor

Can “construct” tensors:
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The only thing we know 
about hadronic tensor 

Hadronic current 
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Hadronic tensor
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(that is the whole story:)

Wµ⌫ =
1

2

1

4⇡M

Z
dXhP |J⌫ |XihX|Jµ|P i(2⇡)4�4(P + q �X)



SLAC-MIT Collaboration

Richard E. Taylor: Deep inelastic scattering

@yO

C
e'

Total
v jI.~ Absol'ption

Counter
dF
dx

dx

Anti
ounters

Hodoscopes Rear Trigger

4~ p Counters
zI

55 g Counters

Front Trigger

FIG. 21. Schematic drawing of the counter system inside the 8 GeV shielding hut.

tor, giving large pulse height in the counters. In most
cases pions wi11 not shower, giving an almost independent
indication of their identity. By the time of the erst in-
elastic scattering experiments using the 8 GeV spectrom-
eter, a gas Cerenkov counter had been added in front of

the trigger counter as a further tool for particle discrim-
ination. The dE/dx system was used only for the lowest
secondary energies where the pion-electron ratios were
large. The 20 GeV spectrometer's counter system (Fig.
22) was similar to that in the 8 GeV spectrometer, with
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Oeep inelastic scattering: Comparisons with the quark model

Jerome I. Friedrnan
Oepartment of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts OZf 90

EARLY RESULTS

In the latter half of 1967 a group of physicists from the
Stanford Linear Accelerator Center (SLAC) and the
Massachusetts Institute of Technology (MIT) embarked
on a program of inelastic electron-proton scattering after
completing an initial study (Coward et al. , 1968) of elas-
tic scattering with physicists from the California Institute
of Technology. This work was done on the newly com-
pleted 20 GeV Stanford linear accelerator. The main
purpose of the inelastic program was to study the elec-
troproduction of resonances as a function of momentum
transfer. It was thought that higher-mass resonances
might become more prominent when excited with virtual
photons, and it was our intent to search for these at the
very highest masses that could be reached. For com-
pleteness we also wanted to look at the inelastic continu-
um, since this was a new energy region which had not
been previously explored. The proton resonances that we
were able to measure' showed no unexpected kinematic
behavior. Their transition form factors fell about as rap-
idly as the elastic proton form factor with increasing
values of the four-momentum transfer q. However, we
found two surprising features when we investigated the
continuum region (now commonly called the deep inelas-
tic region).

as a function of the square of the four-momentum
transfer, q =2EE'(1—cos8), for constant values of the
invariant mass of the recoiling target system 8' where
W =2M(E E')—+M q. —The quantity E is the ener-
gy of the incident electron, E' is the energy of the final
electron, and 8 is the scattering angle, all defined in the
laboratory system; M is the mass of the proton. The
cross section is divided by the Mott cross section in order
to remove the major part of the well-known four-
momentum-transfer dependence arising from the photon
propagator. The q dependence that remains is related
primarily to the properties of the target system. Results
from 10' are shown in the figure for each value of 8'. As
8 increases, the q dependence appears to decrease. The
striking difference between the behavior of the deep in-
elastic and elastic cross sections is also illustrated in this
figure, where the elastic cross section, divided by the
Mott cross section for 0= 10, is shown.
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(1)Weak q2 dependence

The first unexpected feature of thes~ early results
(Bloom et al. , 1969; Breidenbach et al. , 1969) was that
the deep inelastic cross sections showed a weak falloff
with increasing q . The scattering yields at the larger
values of q were between one and two orders of magni-
tude greater than expected.
The weak momentum-transfer dependence of the in-

elastic cross sections for excitations well beyond the reso-
nance region is illustrated in Fig. 1. The differential cross
section divided by the Mott cross section o.M,« is plotted
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*This lecture was delivered 8 December, 1990, on the occasion
of the presentation of the 1990Nobel Prize in Physics.
~W. K. H. Panofsky, in Proceedings of the XIV International
Conference on High Energy Physics, Vienna (1968), p. 23. The
experimental report, presented by the author, is not published
in the Conference Proceedings. It was, however, produced as a
SLAC preprint.
The Mott cross section,

FICr. 1. (d o./dQdE')/oM«„ in GeV ', vs q for 8 =2, 3, and
3.5 GeV. The lines drawn through the data are meant to guide
the eye. Also shown is the cross section for elastic e-p scatter-
ing divided by o-M«„(do-/d0)/o. M«„calculated for 0=10', us-
ing the dipole form factor. The relatively slow variation with q
of the inelastic cross section compared with the elastic cross
section is clearly shown.
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F1(x,Q
2) = 2MW1(⌫, Q

2)

F2(x,Q
2) = ⌫W2(⌫, Q

2)

Predicted by Bjorken

Explained by Feynman 
within the parton model
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When the experiment was planned, there was no clear
theoretical picture of what to expect. The observations
of Hofstadter (McAllister and Hofstadter, 1956) in his
pioneering studies of elastic electron scattering from the
proton showed that the proton had a size of about 10
cm and a smooth charge distribution. This result, plus
the theoretical framework that was most widely accepted
at the time, suggested to our group when the experiment
was planned that the deep inelastic electron-proton cross
sections would fall rapidly with increasing q .

(2) Scaling

The second surprising feature in the data, scaling, was
found by following a suggestion by Bjorken (1969). To
describe the concept of scaling, one has to introduce the
general expression for the di6'erential cross section for
unpolarized electrons scattering from unpolarized nu-
cleons with only the scattered electrons detected (Drell
and Walecka, 1964),

0 0
, =o.M,«8 a+28 fatadQ dE'

The functions 8'& and W2 are called structure func-
tions and depend on the properties of the target system.
As there are two polarization states of the virtual photon,
transverse and longitudinal, two such functions are re-
quired to describe this process. In general, 8'& and 8'z
are each expected to be functions of both q and v, where
v is the energy loss of the scattered electron. However,
on the basis of models that satisfy current algebra, Bjork-
en conjectured that, in the limit of q and v approaching
ao, the two quantities v8'2 and 8'& become functions
only of the ratio co=2Mv/q; that is,

2MW, (v, q') E,(~),
v8'2(v, q )~F2(cu) .
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g 0 W~2.6 GeV
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2MpWi
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„ii4

~WN~0a 4~ I s & i I I

0.5

0=O.IB
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firmly imbedded in 5-matrix and Regge-pole formalism,
the experimental results caused some speculation regard-
ing the existence of a possible point-like structure in the
proton. In his plenary talk at the XIV International
Conference on High Energy Physics held in Vienna in
1968, where preliminary results on the weak q depen-
dence and scaling were first presented, Panofsky (1968)
reported ".. . theoretical speculations are focused on the
possibility that these data might give evidence on the be-
havior of point-like charged structures in the nucleon. "
However, this was not the prevailing point of view. Even
if one had proposed a constituent model at that time it
was not clear that there were reasonable candidates for
the constituents. Quarks, which had been proposed in-
dependently by Gell-Mann (1964) and Zweig (1964a,
1964b) as the building blocks of unitary symmetry (Cxell-
Mann, 1961;Ne'eman, 1961) in 1964, had been sought in
numerous accelerator and cosmic-ray investigations and
in the terrestrial environment without success. Though
the quark model provided the best available tool for un-
derstanding the properties of the many recently
discovered hadronic resonances, it was thought by many
to be merely a mathematical representation of some
deeper dynamics, but one of the heuristic value. Consid-
erably more experimental and theoretical results had to
be accumulated before a clear picture emerged. More de-
tailed descriptions of the development of the deep inelas-
tic program and its early results are given in the written
versions of the 1990 Physics Nobel Lectures of R. E.
Taylor (1991)and H. W. Kendall (1991).

The scaling behavior of the structure functions is
shown in Fig. 2, where experimental values of v8'2 and
2M@'& are plotted as a function of cu for values of q
ranging from 2 to 20 GeV . The data demonstrated scal-
ing within experimental errors for q & 2 GeV and8') 2.6 GeV.
The dynamical origin of scaling was not clear at that

time, and a number of models were proposed to account
for this behavior and the weak q dependence of the in-
elastic cross section. While most of these models were

0.2

0 I s i i s i i I

4 6 8 IO
I

20

In a private communication, Bjorken told the MIT-SLAC
group about scaling in 1968.

FIG. 2. 2MB', and vS"2 for the proton as functions of co for8') 2.6 GeV, q ) 1 (GeV/c ), and R =0.18. Data from Miller
et al. (1972). The quantity R is discussed in the section of this
paper entitled Non-Constituent Models
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2 GeV 2 < Q2 < 20 GeV 2



Parton model
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P

Bag of “free” partons

p = yP

Fraction of parton momentum

In the leading order

x = y

Final state interactions

Subprocess depends 
on Bjorken x

f(y)

Distribution function

We want to calculate structure functions 
in terms of distribution functions

(p+ q)2 = 0



Factorization
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Scattering of the photon 
on a single quark
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Scattering on a single quark
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Scattering on a single quark
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space integration:
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We’ve got an explicit formula for the 
photon scattering on a single quark

In the leading order two 
variables coincide
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Scattering on a single quark
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Scattering on a single quark
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Leading order result for 
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Bjorken scaling
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When the experiment was planned, there was no clear
theoretical picture of what to expect. The observations
of Hofstadter (McAllister and Hofstadter, 1956) in his
pioneering studies of elastic electron scattering from the
proton showed that the proton had a size of about 10
cm and a smooth charge distribution. This result, plus
the theoretical framework that was most widely accepted
at the time, suggested to our group when the experiment
was planned that the deep inelastic electron-proton cross
sections would fall rapidly with increasing q .

(2) Scaling

The second surprising feature in the data, scaling, was
found by following a suggestion by Bjorken (1969). To
describe the concept of scaling, one has to introduce the
general expression for the di6'erential cross section for
unpolarized electrons scattering from unpolarized nu-
cleons with only the scattered electrons detected (Drell
and Walecka, 1964),

0 0
, =o.M,«8 a+28 fatadQ dE'

The functions 8'& and W2 are called structure func-
tions and depend on the properties of the target system.
As there are two polarization states of the virtual photon,
transverse and longitudinal, two such functions are re-
quired to describe this process. In general, 8'& and 8'z
are each expected to be functions of both q and v, where
v is the energy loss of the scattered electron. However,
on the basis of models that satisfy current algebra, Bjork-
en conjectured that, in the limit of q and v approaching
ao, the two quantities v8'2 and 8'& become functions
only of the ratio co=2Mv/q; that is,

2MW, (v, q') E,(~),
v8'2(v, q )~F2(cu) .
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0=O.IB
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firmly imbedded in 5-matrix and Regge-pole formalism,
the experimental results caused some speculation regard-
ing the existence of a possible point-like structure in the
proton. In his plenary talk at the XIV International
Conference on High Energy Physics held in Vienna in
1968, where preliminary results on the weak q depen-
dence and scaling were first presented, Panofsky (1968)
reported ".. . theoretical speculations are focused on the
possibility that these data might give evidence on the be-
havior of point-like charged structures in the nucleon. "
However, this was not the prevailing point of view. Even
if one had proposed a constituent model at that time it
was not clear that there were reasonable candidates for
the constituents. Quarks, which had been proposed in-
dependently by Gell-Mann (1964) and Zweig (1964a,
1964b) as the building blocks of unitary symmetry (Cxell-
Mann, 1961;Ne'eman, 1961) in 1964, had been sought in
numerous accelerator and cosmic-ray investigations and
in the terrestrial environment without success. Though
the quark model provided the best available tool for un-
derstanding the properties of the many recently
discovered hadronic resonances, it was thought by many
to be merely a mathematical representation of some
deeper dynamics, but one of the heuristic value. Consid-
erably more experimental and theoretical results had to
be accumulated before a clear picture emerged. More de-
tailed descriptions of the development of the deep inelas-
tic program and its early results are given in the written
versions of the 1990 Physics Nobel Lectures of R. E.
Taylor (1991)and H. W. Kendall (1991).

The scaling behavior of the structure functions is
shown in Fig. 2, where experimental values of v8'2 and
2M@'& are plotted as a function of cu for values of q
ranging from 2 to 20 GeV . The data demonstrated scal-
ing within experimental errors for q & 2 GeV and8') 2.6 GeV.
The dynamical origin of scaling was not clear at that

time, and a number of models were proposed to account
for this behavior and the weak q dependence of the in-
elastic cross section. While most of these models were

0.2

0 I s i i s i i I

4 6 8 IO
I
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In a private communication, Bjorken told the MIT-SLAC
group about scaling in 1968.

FIG. 2. 2MB', and vS"2 for the proton as functions of co for8') 2.6 GeV, q ) 1 (GeV/c ), and R =0.18. Data from Miller
et al. (1972). The quantity R is discussed in the section of this
paper entitled Non-Constituent Models
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Drell-Yan process
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“Invariant mass” of 
the lepton pair
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DIS in the parton model
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Drell-Yan in the parton model

To get the full formula sum over flavors and 
add another combination of quark-antiquark

Hadronic subprocess

s0 ⌘ M2



Amplitude of the subprocess

q̄(x1)

q(x2)

Non-perturbative part

p1 = x1P1

p2 = x2P2

Hadronic subprocess

We assume that the photon 
can be detected directly

In the leading order the result is 
very simple:
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Amplitude of the subprocess

Average over spin of 
two quarks
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We didn’t have this 
factor in DIS. Why?

The amplitude doesn’t depend on color, but 
more complex combinations are possible 

tail



Amplitude of the subprocess
1

9

1

4

X

spin, color

|M |2 = �gµ⌫
1

3

g2

4
Tr{/p

1

�µ
/p
2

�⌫}

1

9

1

4

X

spin, color

|M |2 =
1

3

g2

4
8p

1

· p
2

=
g2

3
s

Tr{�µ�⌫�⇢��} = 4
�
gµ⌫g⇢� � gµ⇢g⌫� + gµ�g⌫⇢

�

Now it is straightforward to 
write the cross section:
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Cross section for the Drell-Yan process

q̄(x1)

q(x2)
P2

P1
p1 = x1P1

p2 = x2P2

d� =

Z 1

⌧0

dx1

Z 1

⌧0/x1

dx2q̄(x1)q(x2)d�̃(qq̄ ! �

⇤)

Final result for the Drell-Yan cross 
section in the parton model

Extract from the experiment
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