Introduction to QCD

Lecture 2

Andrey Tarasov

QCD: Hadron at different scales

Quark and gluons don't exist as asymptotic states

Where does Q^2 come from?

Hadron radius

Extracted from the Review of Particle Physics K.A. Olive et al. (Particle Data Group), Chin. Phys. C. 38, 090001 (2014) See http://pdg.bl.gov/ for Particle Listings. complete reviews and pdg.live (our interactive database)

Chinese Physics C

Available from PDG of LBNL and CERN

150 Baryon Summary Table

p

$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$

Mass $m = 1.00727646681 \pm 0.0000000009 \,\mathrm{u}$ Mass $m = 938.272046 \pm 0.000021$ MeV ^[a] $|m_p - m_{\overline{p}}|/m_p < 7 \times 10^{-10}$, CL = 90% [b] $\left|\frac{q_{\bar{\rho}}}{m_{\bar{n}}}\right|/(\frac{q_{\rho}}{m_{o}}) = 0.9999999991 \pm 0.0000000009$ $|q_{p} + q_{\overline{p}}|/e < 7 \times 10^{-10}$, CL = 90% [b] $|q_p + q_e|/e < 1 \times 10^{-21} [c]$ Magnetic moment $\mu = 2.792847356 \pm 0.000000023 \,\mu_N$ $(\mu_{D} + \mu_{\overline{D}}) / \mu_{D} = (0 \pm 5) \times 10^{-6}$ Electric dipole moment $d < 0.54 \times 10^{-23} e$ cm Electric polarizability $\alpha = (11.2 \pm 0.4) \times 10^{-4} \text{ fm}^3$ Magnetic polarizability $\beta = (2.5 \pm 0.4) \times 10^{-4} \text{ fm}^3$ (S = 1.2) Charge radius, μp Lamb shift = 0.84087 \pm 0.00039 fm [d] Charge radius, ep CODATA value = 0.8775 \pm 0.0051 fm ^[d] Magnetic radius = 0.777 \pm 0.016 fm Mean life $\tau > 2.1 \times 10^{29}$ years, CL = 90% [e] ($p \rightarrow$ invisible mode)

Mean life $\tau > 10^{31}$ to 10^{33} years ^[e] (mode dependent)

See the "Note on Nucleon Decay" in our 1994 edition (Phys. Rev. $\pmb{D50},$ 1173) for a short review.

The "partial mean life" limits tabulated here are the limits on τ/B_i , where τ is the total mean life and B_i is the branching fraction for the mode in question. For *N* decays, *p* and *n* indicate proton and neutron partial lifetimes.

	Partial mean life		р
ρ DECAY MODES	(10 ³⁰ years)	Confidence level	(MeV/c)
Antilepton + meson			
$N \rightarrow e^+ \pi$	> 2000 (n), > 8200 (j	p) 90%	459
$N \rightarrow \mu^+ \pi$	>1000 (n), >6600 (p) 90%	453
$N \rightarrow \nu \pi$	>112 (<i>n</i>), >16 (<i>p</i>)	90%	459
$p \rightarrow e^+ \eta$	> 4200	90%	309
$p \rightarrow \mu^+ \eta$	> 1300	90%	297
$n \rightarrow \nu \eta$	> 158	90%	310
$N \rightarrow e^+ \rho$	> 217 (<i>n</i>), > 710 (<i>p</i>)	90%	149
$N \rightarrow \mu^+ \rho$	> 228 (n), > 160 (p)	90%	113
$N \rightarrow \nu \rho$	> 19 (<i>n</i>), > 162 (<i>p</i>)	90%	149
$p \rightarrow e^+ \omega$	> 320	90%	143
$p \rightarrow \mu^+ \omega$	> 780	90%	105
$n \rightarrow \nu \omega$	> 108	90%	144
$N \rightarrow e^+ K$	> 17 (n), $> 1000 (p)$	90%	339
$N \rightarrow \mu^+ K$	> 26 (n), $> 1600 (p)$	90%	329
$N \rightarrow \nu K$	> 86 (<i>n</i>), $>$ 2300 (<i>p</i>)	90%	339
$n \rightarrow \nu K_S^0$	> 260	90%	338
$p \rightarrow e^+ K^* (892)^0$	> 84	90%	45
$N \rightarrow \nu K^*(892)$	> 78 (n), > 51 (p)	90%	45

Hadron scale

Hadron radius ("internal" scale)

 $1 fm = 10^{-15} m$

"External" scale

Deep Inelastic Scattering

"External" scale

Parton model

DIS cross section

Average over incoming spin of a hadron and electron

DIS cross section

Apply completeness relation:

$$\sum_{s} u_j^s(l)\bar{u}_k^s(l) = (\not l + m)_{jk}$$

$$L^{\mu\nu} = \frac{1}{2} \sum_{s,s'} \bar{u}_i^{s'}(l') \gamma^{\mu}_{ij} u_j^s(l) \times \bar{u}_k^s(l) \gamma^{\nu}_{kl} u_l^{s'}(l')$$

sum over spin state

$$L^{\mu\nu} = \frac{1}{2} l'_{li} \gamma^{\mu}_{ij} l_{jk} \gamma^{\nu}_{kl} = \frac{1}{2} Tr\{l' \gamma^{\mu} l \gamma^{\nu}\}$$

$$L^{\mu\nu} = 2(l'^{\mu}l^{\nu} + l'^{\nu}l^{\mu} - g^{\mu\nu}l \cdot l')$$

Final answer for the leptonic part. Pretty easy to get!!!

$$Tr\{\text{any odd number of } \gamma\} = 0$$

 $Tr\{\gamma^{\mu}\gamma^{\nu}\} = 4g^{\mu\nu}$

$$Tr\{\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}\gamma^{\sigma}\} = 4(g^{\mu\nu}g^{\rho\sigma} - g^{\mu\rho}g^{\nu\sigma} + g^{\mu\sigma}g^{\nu\rho})$$

It is time to write the cross section

$$d\sigma = \frac{1}{4} [(k_A \cdot k_B)^2 - m_A^2 m_B^2]^{-1/2}$$

$$\times \prod_i \int \frac{d^3 p_i}{(2\pi)^3 2E_i} |M|^2 (2\pi)^4 \delta^4 (k_A + k_B - \sum p_i)$$
Formula for the cross section from the previous lecture
$$d\sigma = \frac{1}{2(S - M^2)} \frac{1}{4} \sum_{s,s'} |M|^2 \frac{d^3 l'}{(2\pi)^3 2E'} dX (2\pi)^4 \delta^4 (P + q - X)$$
Functional state
$$d\sigma = \frac{1}{2(S - M^2)} \frac{1}{4} \sum_{s,s'} |M|^2 \frac{d^3 l'}{(2\pi)^3 2E'} dX (2\pi)^4 \delta^4 (P + q - X)$$
Functional state
$$\frac{1}{4} \sum_{s,s'} |M|^2 = e^4 \frac{1}{Q^4} L^{\mu\nu} \frac{1}{2} \langle P|J_\nu|X\rangle \langle X|J_\mu|P\rangle$$

Calculated this on the previous slide

Do not know what it is

It is time to write the cross section

Hadronic tensor

$$W_{\mu\nu} = \frac{1}{2} \frac{1}{4\pi M} \int dX \langle P|J_{\nu}|X \rangle \langle X|J_{\mu}|P \rangle (2\pi)^4 \delta^4 (P+q-X)$$

Can "construct" tensors:

Hadronic current conservation

 $q^{\mu}W_{\mu\nu} = 0 \qquad \qquad q^{\nu}W_{\mu\nu} = 0$

Limited number of structures

Let's find functions, which fulfill this condition

The only thing we know about hadronic tensor

Hadronic tensor

$$W_{\mu\nu} = \frac{1}{2} \frac{1}{4\pi M} \int dX \langle P|J_{\nu}|X \rangle \langle X|J_{\mu}|P \rangle (2\pi)^{4} \delta^{4}(P+q-X)$$

$$q_{\nu}$$
Scalar coefficients
$$F_{\mu}$$

$$W_{\mu\nu} = -\left(g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^{2}}\right) W_{1}(\nu,Q^{2}) + \frac{1}{M^{2}} \left(P_{\mu} - q_{\mu} \frac{P \cdot q}{q^{2}}\right) \left(P_{\nu} - q_{\nu} \frac{P \cdot q}{q^{2}}\right) W_{2}(\nu,Q^{2})$$

$$d\sigma = \frac{1}{2(S-M^{2})} e^{4} \frac{1}{Q^{4}} L^{\mu\nu} 4\pi M W_{\mu\nu} \frac{d^{3}l'}{(2\pi)^{3}2E'}$$

$$F_{1}(x,Q^{2}) = 2M W_{1}(\nu,Q^{2})$$

$$F_{2}(x,Q^{2}) = \nu W_{2}(\nu,Q^{2})$$
Measure this functions
(that is the whole story:)
$$M_{\mu\nu} = \int_{0}^{0} \frac{1}{Q^{4}} \int dX \langle P|J_{\nu}|X \rangle \langle X|J_{\mu}|P \rangle \langle 2\pi \rangle^{4} \delta^{4}(P+q-X)$$

SLAC-MIT Collaboration

Parton model

Scattering on a single quark

We've got an explicit formula for the photon scattering on a single quark

$$W_{\mu\nu} = -\left(g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^2}\right)W_1(\nu, Q^2) + \frac{1}{M^2}\left(P_{\mu} - q_{\mu}\frac{P \cdot q}{q^2}\right)\left(P_{\nu} - q_{\nu}\frac{P \cdot q}{q^2}\right)W_2(\nu, Q^2)$$

Scattering on a single quark

$$W_{\mu\nu} = \frac{1}{4\pi M} \frac{2\pi}{P \cdot q} \sum_{i} Q_{i}^{2} \int_{x}^{1} \frac{dy}{y} f_{i}(y) \Big(2y^{2} P_{\mu} P_{\nu} + yq_{\mu} P_{\nu} + yq_{\nu} P_{\mu} - yg_{\mu\nu} P \cdot q \Big) \delta(y - x)$$

$$Rewrite$$

$$x = \frac{Q^{2}}{2\nu M} \quad \nu = \frac{P \cdot q}{M}$$

$$W_{\mu\nu} = \sum_{i} Q_{i}^{2} f_{i}(x) \Big\{ -\Big(g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^{2}}\Big) \frac{1}{2M} + \frac{1}{M^{2}} \Big(P_{\mu} - q_{\mu} \frac{P \cdot q}{q^{2}}\Big) \Big(P_{\nu} - q_{\nu} \frac{P \cdot q}{q^{2}}\Big) \frac{Q^{2}}{2\nu P \cdot q} \Big\}$$

$$Quark \text{ current leads to a } J_{\nu} = Q\bar{\psi}\gamma_{\mu}\psi$$

$$W_{\mu\nu} = -\Big(g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^{2}}\Big)W_{1}(\nu, Q^{2}) + \frac{1}{M^{2}}\Big(P_{\mu} - q_{\mu} \frac{P \cdot q}{q^{2}}\Big)\Big(P_{\nu} - q_{\nu} \frac{P \cdot q}{q^{2}}\Big)W_{2}(\nu, Q^{2})$$

$$W_1(\nu, Q^2) = \sum_i \frac{Q_i^2}{2M} f_i(x) \qquad \qquad W_2(\nu, Q^2) = \sum_i \frac{Q_i^2}{\nu} x f_i(x)$$

Leading order result for the form factors

Drell-Yan process

DIS in the parton model

$$s = (p_1 + p_2)^2 = x_1 x_2 S$$
 $au \equiv s/S$ $s_0 \equiv M^2$ "Invariant mass" of the lepton pair

Drell-Yan in the parton model

 $d\sigma = \int_{x}^{1} dy f(y) d\tilde{\sigma} \qquad \qquad d\sigma = \int_{\tau_0}^{1} dx$

$$d\sigma = \int_{\tau_0}^1 dx_1 \int_{\tau_0/x_1}^1 dx_2 \bar{q}(x_1) q(x_2) d\tilde{\sigma}(q\bar{q} \to \gamma^*)$$

To get the full formula sum over flavors and add another combination of quark-antiquark

Amplitude of the subprocess

Amplitude of the subprocess

Amplitude of the subprocess

Cross section for the Drell-Yan process

