Introduction to QCD

Lecture 2
Andrey Tarasov

Jefferson Lab

What do we know now

$$
\psi(x) \rightarrow e^{i \alpha^{a}(x)^{a}} \psi(x) \quad{ }^{\wedge} \mathcal{L}_{Q C D}=\bar{\psi}(i \not \partial-m) \psi-\frac{1}{4} F_{\mu \nu}^{a 2}+g \bar{\psi} \gamma^{\mu} t^{a} \psi A_{\mu}^{a}
$$

QCD: Hadron at different scales

soft physics

Quark and gluons don't exist as asymptotic states
perturbative QCD

Where does Q^{2} come from?

Hadron radius

150 Baryon Summary Table
espDG
July 2014
PARTICLE PHYSICS BOOKLET
 onnectaminic

Chinese Physics C
Aredien tom roce ilve ond cise
p
$\left|q_{p}+q_{e}\right| / e<1 \times 10^{-21}[c]$
$\left(\mu_{p}+\mu_{\bar{p}}\right) / \mu_{p}=(0 \pm 5) \times 10^{-6}$

$I\left(J^{P}\right)=\frac{1}{2}\left(\frac{1}{2}+\right)$
Mass $m=1.00727646681 \pm 0.00000000009 u$ Mass $m=938.272046 \pm 0.000021 \mathrm{MeV}[a]$
$\left|m_{p}-m_{\bar{p}}\right| / m_{p}<7 \times 10^{-10}, \mathrm{CL}=90 \%[b]$
$\left|\frac{q_{\bar{p}}}{m_{\bar{p}}}\right| /\left(\frac{q_{p}}{m_{p}}\right)=0.99999999991 \pm 0.00000000009$
$\left|q_{p}+q_{\bar{p}}\right| / e<7 \times 10^{-10}, \mathrm{CL}=90 \%{ }^{[b]}$
Magnetic moment $\mu=2.792847356 \pm 0.000000023 \mu_{N}$
Electric dipole moment $d<0.54 \times 10^{-23} \mathrm{ecm}$
Electric polarizability $\alpha=(11.2 \pm 0.4) \times 10^{-4} \mathrm{fm}^{3}$
Magnetic polarizability $\beta=(2.5 \pm 0.4) \times 10^{-4} \mathrm{fm}^{3} \quad(\mathrm{~S}=1.2)$
Charge radius, μp Lamb shift $=0.84087 \pm 0.00039 \mathrm{fm}[d]$
Charge radius, $e p$ CODATA value $=0.8775 \pm 0.0051 \mathrm{fm}[d]$ Magnetic radius $=0.777 \pm 0.016 \mathrm{fm}$ Mean life $\tau>2.1 \times 10^{29}$ years, $\mathrm{CL}=90 \%{ }^{[e]} \quad(p \rightarrow$ invisible mode)
Mean life $\tau>10^{31}$ to 10^{33} years [e] (mode dependent)
See the "Note on Nucleon Decay" in our 1994 edition (Phys. Rev. D50, 1173) for a short review.
The "partial mean life" limits tabulated here are the limits on τ / B_{i}, where τ is the total mean life and $\mathrm{B}_{\boldsymbol{i}}$ is the branching fraction for the mode in question. For N decays, p and n indicate proton and neutron partial lifetimes.

p DECAY MODES

Partial mean life
$\left(10^{30}\right.$ years $)$
10^{30} years) Confidence level $\begin{gathered}p \\ (\mathrm{MeV} / \mathrm{C})\end{gathered}$

	Antilepton + meson		
$N \rightarrow e^{+} \pi$	$>2000(n),>8200(p)$	90%	459
$N \rightarrow \mu^{+} \pi$	$>1000(n),>6600(p)$	90%	453
$N \rightarrow \nu \pi$	$>112(n),>16(p)$	90%	459
$p \rightarrow e^{+} \eta$	>4200	90%	309
$p \rightarrow \mu^{+} \eta$	>1300	90%	297
$n \rightarrow \nu \eta$	>158	90%	310
$N \rightarrow e^{+} \rho$	$>217(n),>710(p)$	90%	149
$N \rightarrow \mu^{+} \rho$	$>228(n),>160(p)$	90%	113
$N \rightarrow \nu \rho$	$>19(n),>162(p)$	90%	149
$p \rightarrow e^{+} \omega$	>320	90%	143
$p \rightarrow \mu^{+} \omega$	>780	90%	105
$n \rightarrow \nu \omega$	>108	90%	144
$N \rightarrow e^{+} K$	$>17(n),>1000(p)$	90%	339
$N \rightarrow \mu^{+} K$	$>26(n),>1600(p)$	90%	329
$N \rightarrow \nu K$	$>86(n),>2300(p)$	90%	339
$n \rightarrow \nu K_{S}^{0}$	>260	90%	338
$p \rightarrow e^{+} K^{*}(892)^{0}$	>84	90%	45
$N \rightarrow \nu K^{*}(892)$	$>78(n),>51(p)$	90%	45

$1 \mathrm{fm}=10^{-15} \mathrm{~m}$

Hadron radius ("internal" scale)

Large coupling constant

(2)PDG

PARTICLE

 PHYSICS BOOKLET $=$

"External" scale

Inclusive vs. Semi-inclusive processes

"External" scale

electron beam

Photon virtuality
neglect electron mass
momentum transfer

$$
q^{2} \equiv\left(l^{\prime}-l\right)^{2}=-2 E E^{\prime}(1-\cos \theta)
$$

External photon brings a hard scale to the problem

"External" scale

electron beam

Electron can distinguish a parton in a see of soft particles

You can see the parton

People didn't know it 50 years ago

Electron interacts with the a whole hadron

Stanford Linear Accelerator Center (SLAC) in 60s

First evidence of the parton model

Parton model

DIS kinematics

DIS amplitude

$i M=\bar{u}^{s^{\prime}}\left(l^{\prime}\right)\left(-i e \gamma^{\mu}\right) u^{s}(l) \times \frac{i}{Q^{2}} \times-i e\langle X|{ }_{\mu}|P\rangle$

Leptonic current

$$
q^{\mu}\langle X| J_{\mu}|P\rangle=0
$$

Hadronic current
We don't know QCD so we don't know its structure

DIS cross section

Average over incoming spin of a hadron and electron

DIS cross section

$$
\begin{aligned}
L^{\mu \nu} & =\frac{1}{2} l_{l i}^{\prime} \gamma_{i j}^{\mu} l_{j k} \gamma_{k l}^{\nu}=\frac{1}{2} \operatorname{Tr}\left\{l^{\prime} \gamma^{\mu} l \gamma^{\nu}\right\} \\
L^{\mu \nu} & =2\left(l^{\prime \mu} l^{\nu}+l^{\prime \nu} l^{\mu}-g^{\mu \nu} l \cdot l^{\prime}\right)
\end{aligned}
$$

Apply completeness relation:

$$
\cdots \quad \operatorname{Tr}\{\text { any odd number of } \gamma\}=0
$$

$$
\operatorname{Tr}\left\{\gamma^{\mu} \gamma^{\nu}\right\}=4 g^{\mu \nu}
$$

$$
\operatorname{Tr}\left\{\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}\right\}=4\left(g^{\mu \nu} g^{\rho \sigma}-g^{\mu \rho} g^{\nu \sigma}+g^{\mu \sigma} g^{\nu \rho}\right)
$$

$$
\begin{aligned}
& L^{\mu \nu}=\frac{1}{2} \sum_{s, s^{\prime}} \bar{u}_{\nabla}^{s^{\prime}}\left(l^{\prime}\right) \gamma_{i j}^{\mu} u_{j}^{s^{\prime}}(l) \times \bar{u}_{k}^{s}(l) \gamma_{k}^{\nu} u_{l}^{s^{\prime}}\left(l^{\prime}\right) \\
& \text { sum over spin state } \\
& \sum_{s} u_{j}^{s}(l) \bar{u}_{k}^{s}(l)=(l+m)_{j k}
\end{aligned}
$$

Final answer for the leptonic
part. Pretty easy to get!!!

It is time to write the cross section

$$
\begin{aligned}
& d \sigma=\frac{1}{4}\left[\left(k_{A} \cdot k_{B}\right)^{2}-m_{A}^{2} m_{B}^{2}\right]^{-1 / 2} \\
\times & \prod_{i} \int \frac{d^{3} p_{i}}{(2 \pi)^{3} 2 E_{i}}|M|^{2}(2 \pi)^{4} \delta^{4}\left(k_{A}+k_{B}-\sum p_{i}\right)
\end{aligned}
$$

final state
phase space

Formula for the cross section from the previous lecture

$$
d \sigma=\frac{1}{2\left(S-M^{2}\right)} \frac{1}{4} \sum_{s, s^{\prime}}|M|^{2} \frac{d^{3} l^{\prime}}{(2 \pi)^{3} 2 E^{\prime}} d X(2 \pi)^{4} \delta^{4}(P+q-X)
$$

flux factor

$$
\frac{1}{4} \sum_{s, s^{\prime}}|M|^{2}=e^{4} \frac{1}{Q^{4}} L^{\mu \nu} \frac{1}{2}\langle P| J_{\nu}|X\rangle\langle X| J_{\mu}|P\rangle
$$

It is time to write the cross section

Unknown hadronic part
All possible final states

$$
d \sigma=\frac{1}{2\left(S-M^{2}\right)} e^{4} \frac{1}{Q^{4}} L^{\mu \nu} \times \frac{1}{2} \int d X\langle P| J_{\nu}|X\rangle\langle X| J_{\mu}|P\rangle(2 \pi)^{4} \delta^{4}(P+q-X) \times \frac{d^{3} l^{\prime}}{(2 \pi)^{3} 2 E^{\prime}}
$$

Final form of the cross section

$$
W_{\mu \nu}=\frac{1}{2} \frac{1}{4 \pi M} \int d X\langle P| J_{\nu}|X\rangle\langle X| J_{\mu}|P\rangle(2 \pi)^{4} \delta^{4}(P+q-X)
$$

$$
d \sigma=\frac{1}{2\left(S-M^{2}\right)} e^{4} \frac{1}{Q^{4}} L^{\mu \nu} 4 \pi M W_{\mu \nu} \frac{d^{3} l^{\prime}}{(2 \pi)^{3} 2 E^{\prime}}
$$

We have no information about this object

Hadronic tensor

$W_{\mu \nu}=\frac{1}{2} \frac{1}{4 \pi M} \int d X\langle P| J_{\nu}|X\rangle\langle X| J_{\mu}|P\rangle(2 \pi)^{4} \delta^{4}(P+q-X)$

Can "construct" tensors:

$$
P_{\mu} P_{\nu} \quad P_{\mu} q_{\nu} \quad P_{\nu} q_{\mu} \quad q_{\mu} q_{\nu} \quad g_{\mu \nu}
$$

Combine

$\left(g_{\mu \nu}-\frac{q_{\mu} q_{\nu}}{q^{2}}\right) \quad\left(P_{\mu}-q_{\mu} \frac{P \cdot q}{q^{2}}\right) \quad\left(P_{\nu}-q_{\nu} \frac{P \cdot q}{q^{2}}\right)$

Limited number of structures

Hadronic current conservation

$$
q^{\mu} W_{\mu \nu}=0 \quad q^{\nu} W_{\mu \nu}=0
$$

A
\vdots
\vdots
The only thing we know about hadronic tensor

Let's find functions, which fulfill this condition

Hadronic tensor

$W_{\mu \nu}=-\left(g_{\mu \nu}-\frac{q_{\mu} q_{\nu}}{q^{2}}\right) W_{1}\left(\nu, Q^{2}\right)+\frac{1}{M^{2}}\left(P_{\mu}-q_{\mu} \frac{P \cdot q}{q^{2}}\right)\left(P_{\nu}-q_{\nu} \frac{P \cdot q}{q^{2}}\right) W_{2}\left(\nu, Q^{2}\right)$
$d \sigma=\frac{1}{2\left(S-M^{2}\right)} e^{4} \frac{1}{Q^{4}} L^{\mu \nu} 4 \pi M W_{\mu \nu} \frac{d^{3} l^{\prime}}{(2 \pi)^{3} 2 E^{\prime}}$

$$
\begin{aligned}
& F_{1}\left(x, Q^{2}\right)=2 M W_{1}\left(\nu, Q^{2}\right) \\
& F_{2}\left(x, Q^{2}\right)=\nu W_{2}\left(\nu, Q^{2}\right)
\end{aligned}
$$

SLAC-MIT Collaboration

Parton model

We want to calculate structure functions in terms of distribution functions

Subprocess depends on Bjorken x

Fraction of parton momentum

In the leading order

Factorization

Information on the hadron

3

$$
d \tilde{\sigma}=\frac{1}{2 s} e^{4} \frac{1}{Q^{4}} L^{\mu \nu} \tilde{W}_{\mu \nu} \frac{d^{3} l^{\prime}}{(2 \pi)^{3} 2 E^{\prime}}
$$

Scattering of the photon on a single quark

$$
\tilde{W}_{\mu \nu}=\frac{1}{2} \int d X\langle p| J_{\nu}|X\rangle\langle X| J_{\mu}|p\rangle(2 \pi)^{4} \delta^{4}(p+q-X)
$$

Scattering on a single quark

$$
\begin{gathered}
W_{\mu \nu}=\frac{1}{4 \pi M} \int_{x}^{1} \frac{d y}{y} f(y) \tilde{W}_{\mu \nu} \\
\tilde{W}_{\mu \nu}=\frac{1}{2} \int d X\langle p| J_{\nu}|X\rangle\langle X| J_{\mu}|p\rangle(2 \pi)^{4} \delta^{4}(p+q-X) \\
\tilde{W}_{\mu \nu}=\frac{1}{2} Q_{i}^{2} \int \frac{d^{3} p^{\prime}}{(2 \pi)^{3} 2 E^{\prime}} \times \bar{u}_{i}^{s}(p) \gamma_{\nu}^{i j} u_{j}^{s^{\prime}}\left(p^{\prime}\right) \times \bar{u}_{k}^{s^{\prime}}\left(p^{\prime}\right) \gamma_{\mu}^{k l} u_{l}^{s}(p) \times(2 \pi)^{4} \delta^{4}\left(p+q-p^{\prime}\right) \\
\tilde{W}_{\mu \nu}=\frac{1}{2} Q_{i}^{2} \int \frac{d^{3} p^{\prime}}{(2 \pi)^{3} 2 E^{\prime}} \times \operatorname{Tr}\left\{p^{\prime} \gamma_{\mu} p \gamma_{\nu}\right\} \times(2 \pi)^{4} \delta^{4}\left(p+q-p^{\prime}\right) \leq \ldots \ldots \ldots \ldots J_{\nu}=Q_{i} \bar{\psi} \gamma_{\mu} \psi
\end{gathered}
$$

Scattering on a single quark

$$
\tilde{W}_{\mu \nu}=\frac{1}{2} Q_{i}^{2} \int \frac{d^{3} p^{\prime}}{(2 \pi)^{3} 2 E^{\prime}} \times \operatorname{Tr}\left\{p^{\prime} \gamma_{\mu} \not p \gamma_{\nu}\right\} \times(2 \pi)^{4} \delta^{4}\left(p+q-p^{\prime}\right)
$$

Let's modify the phasespace integration:

the mass-shelf

$$
\int \frac{d^{3} p^{\prime}}{(2 \pi)^{3} 2 E^{\prime}} \times(2 \pi)^{4} \delta^{4}\left(p+q-p^{\prime}\right)=\int \frac{d^{4} p^{\prime}}{(2 \pi)^{4}} \times 2 \pi \delta\left(p^{\prime 2}\right) \times(2 \pi)^{4} \delta^{4}\left(p+q-p^{\prime}\right)
$$

Integrate over momentum
conservation

$$
\int \frac{d^{3} p^{\prime}}{(2 \pi)^{3} 2 E^{\prime}} \times(2 \pi)^{4} \delta^{4}\left(p+q-p^{\prime}\right)=2 \pi \delta\left(2 p \cdot q-Q^{2}\right)
$$

In the leading order two variables coincide

$$
\tilde{W}_{\mu \nu}=2 Q_{i}^{2}\left(2 y^{2} P_{\mu} P_{\nu}+y q_{\mu} P_{\nu}+y q_{\nu} P_{\mu}-y g_{\mu \nu} P \cdot q\right) \frac{2 \pi \delta(y-x)}{2 P \cdot q}
$$

We've got an explicit formula for the photon scattering on a single quark

Scattering on a single quark

$$
W_{\mu \nu}=\frac{1}{4 \pi M} \int_{x}^{1} \frac{d y}{y} f(y) \tilde{W}_{\mu \nu}
$$

Non-perturbative part
Perturbative part

$$
\tilde{W}_{\mu \nu}=2 Q_{i}^{2}\left(2 y^{2} P_{\mu} P_{\nu}+y q_{\mu} P_{\nu}+y q_{\nu} P_{\mu}-y g_{\mu \nu} P \cdot q\right) \frac{2 \pi \delta(y-x)}{2 P \cdot q}
$$

Sum over different flavors

$$
\begin{aligned}
& W_{\mu \nu}=\frac{1}{4 \pi M} \frac{2 \pi}{P \cdot q} \sum_{i}^{\dot{\dot{\nabla}}} Q_{i}^{2} \int_{x}^{1} \frac{d y}{y} f_{i}(y)\left(2 y^{2} P_{\mu} P_{\nu}+y q_{\mu} P_{\nu}+y q_{\nu} P_{\mu}-y g_{\mu \nu} P \cdot q\right) \delta(y-x) \\
& \text { mpare: }
\end{aligned}
$$

$$
W_{\mu \nu}=-\left(g_{\mu \nu}-\frac{q_{\mu} q_{\nu}}{q^{2}}\right) W_{1}\left(\nu, Q^{2}\right)+\frac{1}{M^{2}}\left(P_{\mu}-q_{\mu} \frac{P \cdot q}{q^{2}}\right)\left(P_{\nu}-q_{\nu} \frac{P \cdot q}{q^{2}}\right) W_{2}\left(\nu, Q^{2}\right)
$$

Scattering on a single quark

$$
\begin{gathered}
W_{\mu \nu}=\frac{1}{4 \pi M} \frac{2 \pi}{P \cdot q} \sum_{i} Q_{i}^{2} \int_{x}^{1} \frac{d y}{y} f_{i}(y)\left(2 y^{2} P_{\mu} P_{\nu}+y q_{\mu} P_{\nu}+y q_{\nu} P_{\mu}-y g_{\mu \nu} P \cdot q\right) \delta(y-x) \\
\vdots \\
\vdots \text { Rewrite }
\end{gathered}
$$

$$
W_{\mu \nu}=\sum_{i} Q_{i}^{2} f_{i}(x)\left\{-\left(g_{\mu \nu}-\frac{q_{\mu} q_{\nu}}{q^{2}}\right) \frac{1}{2 M}+\frac{1}{M^{2}}\left(P_{\mu}-q_{\mu} \frac{P \cdot q}{q^{2}}\right)\left(P_{\nu}-q_{\nu} \frac{P \cdot q}{q^{2}}\right) \frac{Q^{2}}{2 \nu P \cdot q}\right\}
$$

Quark current leads to a proper form

$$
W_{1}\left(\nu, Q^{2}\right)=\sum_{i} \frac{Q_{i}^{2}}{2 M} f_{i}(x) \quad W_{2}\left(\nu, Q^{2}\right)=\sum_{i} \frac{Q_{i}^{2}}{\nu} x f_{i}(x)
$$

Leading order result for the form factors

Bjorken scaling

$$
W_{1}\left(\nu, Q^{2}\right)=\sum_{i} \frac{Q_{i}^{2}}{2 M} f_{i}(x) \quad W_{2}\left(\nu, Q^{2}\right)=\sum_{i} \frac{Q_{i}^{2}}{\nu} x f_{i}(x)
$$

$$
F_{1}\left(x, Q^{2}\right)=\sum_{i} Q_{i}^{2} f_{i}(x) \quad F_{2}\left(x, Q^{2}\right)=\sum_{i} Q_{i}^{2} x f_{i}(x)
$$

Callan-Gross relation $\quad F_{2}=x F_{1}$

Dominant contribution at large x

Drell-Yan process

$$
s=\left(p_{1}+p_{2}\right)^{2}=x_{1} x_{2} S \quad \tau \equiv s / S
$$

$$
s_{0} \equiv M^{2}
$$

"Invariant mass" of
the lepton pair

DIS in the parton model
Drell-Yan in the parton model

$$
d \sigma=\int_{x}^{1} d y f(y) d \tilde{\sigma}
$$

$$
d \sigma=\int_{\tau_{0}}^{1} d x_{1} \int_{\tau_{0} / x_{1}}^{1} d x_{2} \bar{q}\left(x_{1}\right) q\left(x_{2}\right) d \tilde{\sigma}\left(q \bar{q} \rightarrow \gamma^{*}\right)
$$

Amplitude of the subprocess

We assume that the photon can be detected directly

In the leading order the result is very simple:

Sum over polarizations

$$
i M=-i g \bar{v}^{s^{\prime}}\left(p_{1}\right) \gamma^{\mu} u^{s}\left(p_{2}\right) \epsilon_{\mu}^{*}(k)
$$

$$
-i M^{*}=i g \bar{u}^{s}\left(p_{2}\right) \gamma^{\nu} v^{s^{\prime}}\left(p_{1}\right) \epsilon_{\nu}(k)
$$

$$
\sum_{s} u^{s}(p) \bar{u}^{s}(p)=(\not p+m)
$$

Amplitude of the subprocess

$$
\begin{array}{r}
\frac{1}{4} \sum_{\text {spin }}|M|^{2}=-g_{\mu \nu} \frac{g^{2}}{4} \operatorname{Tr}\left\{\not p_{1} \gamma^{\mu} \not p_{2} \gamma^{\nu}\right\} \\
\text { That's not all. We have coloc........................... }
\end{array}
$$

Average over spin of two quarks

$$
\sum_{s} u_{i}^{s}(p) \bar{u}_{j}^{s}(p)=(\not p+m) \delta_{i j}
$$

The amplitude doesn't depend on color, but more complex combinations are possible

$$
\frac{1}{9} \frac{1}{4} \sum_{\text {spin, color }}|M|^{2}=-g_{\mu \nu} \frac{1}{3} \frac{g^{2}}{4} \operatorname{Tr}\left\{\not p_{1} \gamma^{\mu} \not p_{2} \gamma^{\nu}\right\}
$$

We didn't have this factor in DIS. Why?

Amplitude of the subprocess

$$
\frac{1}{9} \frac{1}{4} \sum_{\text {spin, color }}|M|^{2}=-g_{\mu \nu} \frac{1}{3} \frac{g^{2}}{4} \operatorname{Tr}\left\{\not p_{1} \gamma^{\mu} \dot{p}_{2} \gamma^{\nu}\right\}
$$

$$
\operatorname{Tr}\left\{\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}\right\}=4\left(g^{\mu \nu} g^{\rho \sigma}-g^{\mu \rho} g^{\nu \sigma}+g^{\mu \sigma} g^{\nu \rho}\right)
$$

$$
\ldots \quad \frac{1}{9} \frac{1}{4} \sum_{\text {spin, color }}|M|^{2}=\frac{1}{3} \frac{g^{2}}{4} 8 p_{1} \cdot p_{2}=\frac{g^{2}}{3} s
$$

Now it is straightforward to write the cross section:

$$
\begin{aligned}
& d \tilde{\sigma}=\frac{1}{2 s} \frac{1}{9 \cdot 4} \sum_{\text {spin, color }}|M|^{2} \frac{d^{3} k}{(2 \pi)^{3} 2 E}(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-k\right) \ddots \ddots \begin{array}{l}
\text { Integral over phase space of the } \\
\text { final particle }
\end{array} \\
& \qquad \int \frac{d^{3} k}{(2 \pi)^{3} 2 E} \times(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-k\right)=\int \frac{d^{4} k}{(2 \pi)^{4}} 2 \pi \delta\left(k^{2}-M^{2}\right) \times(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-k\right)
\end{aligned}
$$

Final result for the partonic cross section $\quad d \tilde{\sigma}=\frac{g^{2}}{6} \times 2 \pi \delta\left(s-M^{2}\right)$

Cross section for the Drell-Yan process

$$
d \sigma=\int_{\tau_{0}}^{1} d x_{1} \int_{\tau_{0} / x_{1}}^{1} d x_{2} \bar{q}\left(x_{1}\right) q\left(x_{2}\right) d \tilde{\sigma}\left(q \bar{q} \rightarrow \gamma^{*}\right)
$$

$$
d \sigma=\frac{g^{2}}{6} \int_{\tau_{0}}^{1} d x_{1} \int_{\tau_{0} / x_{1}}^{1} d x_{2} \bar{q}\left(x_{1}\right) q\left(x_{2}\right) \times 2 \pi \delta\left(x_{1} x_{2} S-M^{2}\right)
$$

Final result for the Drell-Yan cross section in the parton model

$$
\tau_{0} \equiv \frac{M^{2}}{S}
$$

